Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Forensic Sci ; 68(3): 768-779, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37009755

RESUMO

Forensically relevant single nucleotide polymorphisms (SNPs) can provide valuable supplemental information to short tandem repeats (STRs) for investigative leads, and genotyping can now be streamlined using massively parallel sequencing (MPS). Dust is an attractive evidence source, as it accumulates on undisturbed surfaces, often is overlooked by perpetrators, and contains sufficient human DNA for analysis. To assess whether SNPs genotyped from indoor dust using MPS could be used to detect known household occupants, 13 households were recruited and provided buccal samples from each occupant and dust from five predefined indoor locations. Thermo Fisher Scientific Precision ID Identity and Ancestry Panels were utilized for SNP genotyping, and sequencing was completed using Illumina® chemistry. FastID, a software developed to permit mixture analysis and identity searching, was used to assess whether known occupants could be detected from associated household dust samples. A modified "subtraction" method was also used in FastID to estimate the percentage of alleles in each dust sample contributed by known and unknown occupants. On average, 72% of autosomal SNPs were recovered from dust samples. When using FastID, (a) 93% of known occupants were detected in at least one indoor dust sample and could not be excluded as contributors to the mixture, and (b) non-contributor alleles were detected in 54% of dust samples (29 ± 11 alleles per dust sample). Overall, this study highlights the potential of analyzing human DNA present in indoor dust to detect known household occupants, which could be valuable for investigative leads.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Humanos , Impressões Digitais de DNA/métodos , Genótipo , DNA/análise , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA , Repetições de Microssatélites
2.
PLoS One ; 15(4): e0231436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298321

RESUMO

Molecular-based taxonomy, specifically DNA barcoding, has streamlined organism identification. For land plants, the recommended 2-locus barcode of rbcL and matK is not suitable for all groups, thus the second subunit of the nuclear internal transcribed spacer (ITS2) has received attention as a possible alternative. To date, evaluations of ITS2 have mostly been limited in scope to specific plant orders/families and single source material. Prior to using ITS2 to routinely characterize land plants present in environmental samples (i.e., DNA metabarcoding), a wet lab protocol optimized for bulk sample types is needed. To address this gap, in this study we determined the broad recoverability across land plants when using published ITS2 primer pairs, and subsequently optimized the PCR reaction constituents and cycling conditions for the best two performing primer pairs (ITS2F/ITSp4 and ITSp3/ITSu4). Using these conditions, both primer pairs were used to characterize land plants present in 17 diverse soils collected from across the US. The resulting PCR amplicons were prepared into libraries and pooled for sequencing on an Illumina® MiniSeq. Our existing bioinformatics workflow was used to process raw sequencing data and taxonomically assign unique ITS2 plant sequences by comparison to GenBank. Given strict quality criteria were imposed on sequences for inclusion in data analysis, only 43.6% and 7.5% of sequences from ITS2F/ITSp4 and ITSp3/ITSu4 respectively remained for taxonomic comparisons; ~7-11% of sequences originated from fungal co-amplification. The number of orders and families recovered did differ between primer pairs, with ITS2F/ITSp4 consistently outperforming ITSp3/ITSu4 by >15%. Primer pair bias was observed in the recovery of certain taxonomic groups; ITS2F/ITSp4 preferentially recovered flowering plants and grasses, whereas ITSp3/ITSu4 recovered more moss taxa. To maximize data recovery and reduce potential bias, we advocate that studies using ITS2 to characterize land plants from environmental samples such as soil use a multiple primer pair approach.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , DNA de Plantas/genética , Metagenômica/métodos , Briófitas/classificação , Briófitas/genética , Código de Barras de DNA Taxonômico/normas , DNA Intergênico/química , DNA de Plantas/química , Gleiquênias/classificação , Gleiquênias/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Metagenômica/normas , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Solo/química
3.
Genes (Basel) ; 10(6)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174412

RESUMO

In forensic geology casework, sample size typically limits routine characterization of material using bulk approaches. To address this, DNA-based characterization of biological taxa has received attention, as the taxa present can be useful for sample-to-sample comparisons and source attribution. In our initial work, low biodiversity was captured when DNA barcodes were Sanger-sequenced from plant and insect fragments isolated from 10 forensic-type surface soils. Considering some forensic laboratories now have access to massively parallel sequencing platforms, we assessed whether biological taxa present in the same surface soils could be better characterized using DNA metabarcoding. To achieve this, plant and animal barcodes were amplified and sequenced on an Illumina MiniSeq for three different DNA sample types (n = 50): individual fragments used in our initial study, and 250 and 100 mg of bulk soil (from the 10 sites used in the initial study). A total of 572 unique target barcode sequences passed quality filtering and were used in downstream statistical analyses: 54, 321, and 285 for individual fragments, 100 mg, and 250 mg bulk soil samples, respectively. Plant barcodes permitted some spatial separation of sample sites in non-metric multidimensional scaling plots; better separation was obtained for samples prepared from bulk soil. This study confirmed that bulk soil DNA metabarcoding is a better approach for characterizing biological taxa present in surface soils, which could supplement traditional geologic examinations.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genética Forense/métodos , Metagenoma/genética , Solo/química , Animais , Biodiversidade , Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Insetos/química , Insetos/genética , Plantas/química , Plantas/genética
4.
Electrophoresis ; 39(21): 2669-2673, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132945

RESUMO

Massively parallel sequencing (MPS) is gaining attention as a new technology for routine forensic casework, including paternity testing. Recently released MPS multiplex panels provide many more loci compared to CE methods, plus provide sequence-based alleles that together improve the statistical power of the genetic testing. Here, an MPS system (PowerSeq™ AUTO/Y) was applied for STR sequencing in the study of first-degree STR sequence allele inheritance from families in Southern Brazil. In 29 trios (mother-child-father) analyzed, the paternity index values generally increased when data from sequence-based analysis were used in comparison to length-based data. Further, allele inconsistencies (e.g., single repeat mutation events) between child and parents could be resolved with MPS by assessing the core repeat and flanking region sequences. Lastly, the sequence information allowed for identification of isoalleles (alleles of the same size, but different sequence) to determine specific paternal and maternal inheritances. The results from this study showed advantages of implementing sequence-based analysis, MPS, in paternity testing with improved statistical calculations and a greater resolution for the trios/families tested.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Paternidade , Alelos , Brasil , Impressões Digitais de DNA/métodos , Feminino , Humanos , Masculino , Análise de Sequência de DNA/métodos
5.
Forensic Sci Int Genet ; 33: 129-135, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29275088

RESUMO

With the advent of Next-Generation Sequencing technology, sequencing of short tandem repeats (STRs) allows for a more detailed analysis when compared to size-based fragment methods (capillary electrophoresis-CE). The implementation of high-throughput sequencing can help uncover deeper genetic diversities of different populations. Subjects from the South region of Brazil present a particular and more homogeneous ancestry background when compared to other regions of the country. Both autosomal and Y- STRs have been analyzed in these individuals; however, all analyses published to date encompass data from CE-based fragment analysis. In this study, a genetic analysis of 59 individuals from Southern Brazil was performed on STR sequences. Forensically relevant STRs were PCR-enriched using a prototype of the PowerSeq™ AUTO/Y system (Promega Corp.). Next-generation sequencing was performed on an Illumina MiSeq instrument. The raw data (FASTQ files) were processed using a custom designed sequence processing tool, Altius. Isoalleles, which are sequence-based allelic variants that do not differ in length, were observed in nine autosomal and in six Y- STRs from the core global forensic marker set. The number of distinctive alleles based on sequence was higher when compared to those based on length, 37.3% higher in autosomal STRs and 13.8% higher in Y-STRs. The most polymorphic autosomal locus was D12S391, which presented 38 different sequence-based alleles. Among the loci in the Y chromosome, DYS389II presented the highest number of isoalleles. In comparison to CE analysis, Observed and Expected Heterozygosity, Polymorphic Information Content (PIC) and Genetic Diversity also presented higher values when the alleles were analyzed based on their sequence. For autosomal loci, Polymorphic Information Content (PIC) was 2.6% higher for sequence-based data. Diversity was 9.3% and 6.5% higher for autosomal and Y markers, respectively. In the analysis of the repeat structures for the STR loci, a new allele variant was found for allele 18 in the vWA locus. The STR flanking regions were also further investigated and sixteen variations were observed at nine autosomal STR loci and one Y-STR locus. The results obtained in this study demonstrate the importance of genetic analysis based on sequencing and highlight the diversity of the South Brazilian population when characterized by STR sequencing.


Assuntos
Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Análise de Sequência de DNA , Brasil , Cromossomos Humanos Y , Impressões Digitais de DNA , Feminino , Frequência do Gene , Variação Genética , Humanos , Masculino , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...